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Abstract-The natural convection of liquid metal in a cubical enclosure was numerically studied for various 
electro-conductivities of the wall from zero to infinity under a static magnetic field. The cubical enclosure 
was heated from one vertical wall and cooled from an opposing vertical wall both isothermally and four 
other walls were thermally insulated. The direction of the static magnetic field was perpendicular to the 
heated and cooled walls (X-direction) or parallel to the heated and cooled walls (Y-direction) for the 
present work. All calculations were carried out for the Rayleigh number 105, the Prandtl number 0.025, 
and the Hal-tmann number 100. Under the X-directional magnetic field, the average heat transfer rate was 
effectively suppressed with an increase in the electro-conductivity of the wall. Under the Y-directional 
magnetic field, the average heat transfer rate was only slightly suppressed for the electrically insulated wall, 
but drastically decreased with an increase in the electro-conductivity of the wall. 0 1997 Elsevier Science 

Ltd. All rights reserved. 

1. INTRODUCTION 

The recent development of technology requires to 
treat the electro-conductive fluid such as liquid metal 
as a working medium. Some of the practical appli- 
cation systems include the magnetohydrodynamic 
power generation system, high speed ship driven by 
super conductive magnetic system, cooling medium 
for nuclear reactclr with a magnetic driven pumping 
system, continuous steel casting system magnetically 
agitated or supprassed and crystallization of molten 
semiconducting .material with magnetically sup- 
pressed or driven system. 

The flow of these fluids is sometimes controlled by 
the application of a magnetic field with using of the 
electro-conductive characteristics of the fluid. These 
operating fluids are more or less in contact with the 
surrounding vessels and/or conduits, whose electro- 
conductivity would affect the flow characteristics fur- 
thermore under an external magnetic field. It is the 
motivation to clarify the effect of the electro-con- 
ductivities of the wall on the natural convection of 
liquid metal. 

Recently, Ozoe and Okada [1] numerically studied 
the effect of the direction of external magnetic fields 
on the natural convection of liquid metal in a cubical 
enclosure. They found that the effect of magnetic sup- 
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pression was quite different depending on the direc- 
tion of the magnetic field. They then carried out the 
experiments with liquid gallium [2] and confirmed 
their numerical prediction. However, their study was 
confined to the electrically insulated walls. The same 
problem for the perfectly electro-conducting walls 
with the deletion of electric field term from the Ohm’s 
law was investigated numerically by Tagawa and Ozoe 
[3]. The magnetic suppression for the perfectly electro- 
conducting walls was much stronger than that for the 
electrically insulated walls. Their result motivated to 
study the effect of electro-conductivity of the wall in 
general. This paper treats the electro-conductivity of 
the walls from zero to infinity for the natural con- 
vection of liquid metal under external magnetic fields. 
The cubic enclosure was selected to study the present 
issue in general. The cylinder vessel may be selected for 
a Czochralski system in a semiconducting industry. 
However, the mixed convection in a modeled cylinder 
regime is rather complicated for a study of wall elec- 
tro-conductivity. 

2. THE SYSTEM AND MODEL EQUATIONS 

The modeled system is a cubical enclosure as shown 
in Fig. 1. The cubical enclosure is filled with liquid 
gallium (Pr = 0.025). It is heated from one vertical 
side wall and cooled from the opposing vertical wall 
isothermally. Four other walls are thermally insulated. 
The external magnetic field is either in the X- or Y- 
directions as shown in Fig. 1. The thickness of the 
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NOMENCLATURE 

magnetic flux density [T] 
uniform external magnetic flux density 

PI 
dimensionless magnetic flux 
density = b/b0 [-] 
electro-conductivity ratio = o,/g [-] 
specific heat of fluid [J (kg - K) ‘1 
electric field [V m- ‘1 
= u,b, [V mm’] 
dimensionless electric field = e/e0 [-] 
acceleration due to gravity [m se21 
Grashof number = gP(0, - 8,)13/v2 [-] 
Hartmann number = (o/p)‘~*bol [-] 
electric current density [A m-‘1 
= mob, [A m-‘1 
dimensionless electric current 
density = jij, [-] 
distance between hot and cold walls 

[ml 
vxo L-1 
Nusselt number = Qconv/Qcond [-] 
pressure [Pa] 
pa*/xi [Pa] 
dimensionless pressure = p/p0 [-] 
Prandtl number = v/a [-] 
conduction heat flux [J (m’ * s)-‘1 
total heat flux [J (m’*s))‘] 
Rayleigh number 
= g/I(& - e,)l’/(c~) = Gr * Pr [-] 
time [s] 
=x;/lX [s] 
dimensionless 
temperature = (e - t?,)/(& - (3,) [-] 
conductive temperature [-] 
convective temperature [-] 
velocity (24, v, w) [m ss’] 
=vo = too = cc/x0 [m ss’] 
dimensionless velocity 
(U, v, W = 00 L-1 
coordinate [m] 

x0 

x 
Y 
Yo 
Y 
Z 
ZO 
Z 

Ra-‘:3 1 [m] 
4x0 1-l 
coordinate [m] 
Rum’:’ I [m] 

Y/Y0 L-1 
coordinate [m] 
Ram”’ 1 [m] 

z/z0 L-1. 

Greek symbols 
CI thermal diffusivity of fluid = ,I/(& 

[m’s’] 

B volumetric coefficient of expansion 

W’l 
B temperature [K] 

4 cold wall temperature [K] 

@II hot wall temperature [K] 

QO = (0, + Q/2 Kl 
1 thermal conductivity of fluid 

W (m*K)-‘I 
P viscosity of fluid [Pa * s] 

V kinematic viscosity of fluid = p/p 
[m’ss’] 

P density of fluid [kg mm’] 
0 electro-conductivity of fluid 

W-n-X’1 
gw electro-conductivity of wall 

W*W’l 

i 
dimensionless time = t/t, [-] 
dimensionless temperature deviation, 
see equation (3) [-] 

;:, 

electric scalar potential [V] 
=ab, [V] 

y’, dimensionless electric scalar 
potential = $&CO [-I. 

Operators 
V = i 8/8X+ j a/a Y + k aj~!?Z 
V2 = a2jax* + a’ja ~2 + a’jaz’. 

surrounding walls is assumed to be 9.62% of the cube current density are both considered. In such a system 
length as a representative case. The model equations the model equations become in dimensionless form as 
for natural convection under the external magnetic follows. 
field consist of continuity, energy and three-direc- 
tional momentum equations including the Lorentz v*u=o (1) 
force terms. The fluid is an incompressible Newtonian 
fluid with Boussinesq approximation. Electric current DU 
density induced by the liquid motion under the exter- -= -VP+PrV2U+Ha2PrRa-2~‘(JxB) or 
nal magnetic field is so slight that the magnetic field 
induced by the electric current density is assumed to 
be negligible in comparison with the external magnetic 
field. Joule heating is also negligible in the energy 
equation. Ohm’s law and the conservation of electric 

+[0,0,Pr(@-X/L+0.5)]T (2) 

D@ 
- = v*@+ U/L, DT @ = T-0.5+X/L (3) 
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Fig. 1. Schematic of the system. 

Table 1. The grid locations in the half regime. The other half 
is symmetric in terms of the center plane. The grid locations 

are the same in the X-, Y- and Z-directions 

Region 

Outer boundary 
Wall 

Inner boundary 
Fluid 

Point Grid coordinate 

1 -0.09622 
2 - 0.06472 
3 -0.04107 
4 - 0.02332 
5 -0.01000 

6 0.00000 
7 0.01000 
8 0.02332 
9 0.04107 

10 0.06472 
11 0.09622 
12 0.13818 
13 0.19409 
14 0.26857 
15 0.36780 
16 0.50000 

J=E+UxB= -VY’,+UxB (fluid) (4) 

J = CmE = Cm(-VY,) (wall) (5) 

V*J=O. (6) 

The dimensionless variables are defined as follows : 

x = x/x0, Y = ylyo, z = z/z,, u = u/u,, 

v = v/vo, W = w/w0 P = P/PO, T = t/t,, 

L = l/x0 = Rc?, ~=(~-~,)l(fhl-~,), 

@ = T-0.5+X/L, B = b/ho, E = e/e,, J = jij,, 

‘f”, = $&e~, Pr = V/E, Ra = gp(& -0,)l’/(cw), 

Ha = (a/p)“*b,Z, Cm = ~,/a, 

x,, = y. II z,, = Ra-‘j3 /, to = x:/cc, 

2do = v. = w. = CC/X,, 8, =(e,+e,y2, 

e. = uobo, jo = ouobo, 

$eo = Mb,, pa = pu21x& 

3. COMPUTATIONAL METHOD 

The above simultaneous equations were approxi- 
mated by the finite difference equations for the non- 
uniform grid sysl:ems. Continuity equation was sat- 
isfied for the stag,gered grid systems for which scalar 
points (pressure, temperature and electric potential) 
and vector points (velocity, electric current density 
and magnetic flux density) were defined at different 
points, respectively, and pressure was solved by 
HSMAC method [4]. In the same way, both electric 
potential and electric current density were solved by 
the HSMAC method, i.e., electric potential II/, and 
electric current density J were calculated to satisfy 
equations (4) and (6) for the fluid regime, or equations 
(5) and (6) for the wall regime. This electric current 
density satisfies the conservation of electric charge 
equation. Inertial terms in the momentum and the 

energy equations were approximated by the hybrid 
scheme [5]. 

The computational grid locations in the X-, Y-, and 
Z-directions are listed in Table 1. Many grids were 
clustered near the interface between the wall and fluid. 
The number of grids in the fluid regime is the same as 
the previous ref. [3]. 

4. INITIAL AND BOUNDARY CONDITIONS 

The initial condition for the computation of natural 
convection is a conduction temperature profile and 
the fluid is stagnant as follows : 

i-J= vz w=o 

fD = T-0.5+X/L = 0 (T= 0.5-X/L). 

The initial condition for the computation of magnetic 
natural convection is the result obtained from that of 
the non-magnetic natural convection. The external 
magnetic field was then applied abruptly. The initial 
conditions for the electric current density and electric 
potential are as follows : 

J, = J, = J; = 0 

Y’, = 0. 

The boundary conditions for velocity and temperature 
are given as follows : 

U= V= W=O atX=O,L, 

Y=O,L and Z=O,L 

CD=0 atX=O,L 

ar= 0 at Y= 0,L 
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Fig. 2. Electric current density at the interface between the 
wall and the fluid. 

a@ 
E=O atZ=O,L. 

The boundary condition for electric current density is 
presented in Fig. 2. Since the velocity near the solid 
wall is negligible, the electric current in the fluid is 
approximated as follows from Ohm’s law : 

j, = -~fZ!$!, 

The electric current in the wall is also approximated 
as follows : 

Since the electric current density in the fluid is equal 
to that in the wall, the electric current at the interface 
satisfies, 

Hence, the boundary conditions for the dimensionless 
electric current density at the interface are obtained 
as follows : 

2Cm av, J,= -~- 
l-kCm ax atX= 0,L 

J  =  _  2Cm aYe 
1 ~_ atY=O,L 

l+Cm ay 
2Cm 

Jz = - 
aul, 

l+Cm az at Z = 0, L 

where Cm (=0,/o) represents the electro-conductivity 
of the wall divided by that of fluid. The outer side of 
the wall was assumed to be electrically insulated as 
follows : 

J, = 0 at X = -0.0962L,l.O962L 

JI = 0 at Y = - O.O962L, 1.0962L 

JL = 0 at Z = -0.0962L,l.O962L. 

5. DEFINITION OF THE AVERAGE NUSSELT 
NUMBER 

The average Nusselt number was computed as a 
ratio of the total heat flux divided by the conductive 
heat flux under the same temperature boundary con- 
dition as the convective heat transfer case as follows : 

total heat flux 
Nu = 

conductive heat flux 

Where, T,,,, represents convective temperature which 
can be obtained by solving the simultaneous equations 
in Section 2. Tcond represents conductive temperature 
obtained by solving the energy equation excluding the 
convective terms. 

6. COMPUTED RESULTS AND DISCUSSION 

The computational parameters and the resultant 
average Nusselt numbers are listed in Table 2. The 
average Nusselt number decreases with Cm under the 
X-directional magnetic field and agrees with the pre- 

Table 2. The computational parameters and the resultant average Nusselt numbers 

Ra Pr Ha NU for _I’-mag. Nu for Y-mag. 

Present work lo5 0.025 0 
lo5 0.025 100 0 

0.01 
0.1 

10 
100 

co 

Ref. [3] lo5 0.025 100 cc 

2.789 2.789 
1.596 2.728 
1.592 2.720 
1.555 2.646 
1.396 2.180 
1.262 1.540 
1.238 1.393 
1.235 1.363 

1.232 1.071 
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vious simplified results [3] shown in the last row. On 
the other hand under the Y-directional magnetic field, 
it does not agree with the simplified solution. This 
means that some amount of electric field is induced in 
the fluid even for the perfectly electro-conducting 
walls (Cm = co) under the Y-directional magnetic 
field. 

Figure 3 shows the transient responses of the aver- 
age Nusselt number on the heated wall after a step 
input of (a) the X- or (b) the Y-directional magnetic 
fields at Ha = 100, Ra = 10’ and Pr = 0.025. In the 
present work, only Ha = 100 was considered as a rep- 
resentative case of the magnetic field. For the X-direc- 
tional magnetic field, the effect of Cm is not strong. 
On the contrary, for the Y-directional magnetic field 
the average Nusselt number changes extensively 
depending on Cm. 

tro-conductivity of the wall is small, i.e., Cm is small, 
the average Nusselt numbers differ extensively depen- 
dent on the direction of the magnetic field. The Y- 
directional magnetic field is far less effective to sup- 
press the natural convection of liquid metal than the 
X-directional one. On the other hand, when the elec- 
tro-conductivity of the wall becomes large, i.e., Cm is 
large, the suppressing effect becomes large inde- 
pendent of the direction of the magnetic field. 

Figure 5 shows the perspective views of velocity 
vectors for the X-directional magnetic field at 
Ra = 105, Ha = 100 and Pr = 0.025. These vectors 
are drawn not only for fluid region but also for wall 
region. At Cm = 0, those velocity vectors near the side 
walls are larger than those in the central region. At 
Cm = co, the magnitude of velocity vectors are almost 
equal everywhere. 

These average Nusselt numbers are plotted vs Cm Figure 6 shows the perspective views of velocity 
on a semi-logarithmic graph in Fig. 4. When the elec- vectors for the Y-directional magnetic field at 

Cm=0 

=‘< 
\ 

\ Cm=1 
\ / 

0, 1.5- 
k&y-. 

----..m . . . . . ..__.__...___._................................. - . . . . . . . . . . . . - 1 . .  

/ ---____________________----~------- 
.-.-._._ ._._ ______._._.___._._,_._._._._._,.._._,_._._._._.. 

(a) X-directional magnetic field 

In I Cm=,lO3m=l OOTm=infinity 
ii300 1100 1200 1300 1400 1500 

Dimensionless time [-I 

1100 1200 1300 1400 1500 

Dimensionless time [-] 
Fig. 3. Transient responses of the average Nusselt number on the heated wall for the effect of electro- 
conductivity ratio at Ha = 100, Ra = 10’ and Pr = 0.025. (a) X-directional magnetic field. (b) Y-directional 

magnetic field. 
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Fig. 4. The effect of electro-conductivity of the wall at Ha = 100, Ra = 10’ and Pr = 0.025. 

(a) Cm =0 
(a) Cm =0 

(b) Cm = 1 

(c) Cm =oo 
Fig. 5. Perspective views of velocity vectors for the X-direc- 
tional magnetic field at Ra = lo’, Ha = 100 and Pr = 0.025. 

Both fluid and surrounding wall regions are presented. 

(b) Cm=1 

(c) Cm =oo 
Fig. 6. Perspective views of velocity vectors for the Y-direc- 
tional magnetic field at Ra = 105, Ha = 100 and Pr = 0.025. 
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Ra = 105, Ha = 100 and Pr = 0.025. The velocity vec- 
tors are drawn in the same scale as in the X-directional 
magnetic field. The velocity vectors are much larger 
than those in Fig. 5. This suggests that the suppression 
is much weaker in the Y-directional magnetic field for 
Cm = 0. The flow is drastically suppressed with the 
increase in Cm. In the Y-directional magnetic field, 
the magnetic suppression increases seriously with the 
increase in Cm, the electro-conductivity of the wall. 

In this paper, numerical calculations were not car- 
ried out for the Z-directional magnetic field in general, 
because the suppressing effect of the Z-directional 
magnetic field is almost equivalent to the X-directional 
magnetic field [l-3]. Under the X-directional magnetic 
field, vertical velocity component is suppressed by the 
Lorentz force, and horizontal velocity component is 
suppressed under the Z-directional magnetic field 
almost equally. Hence, the suppressing effect on the 
circulating flow is almost identical between these two 
magnetic fields. Figure 7 shows those computed (a) in 
the X- and (b) in the Z-directional magnetic field, 
otherwise the same conditions. 

Subsequent discussion is for the reasoning why the 
suppressing effect differs so much between the X- and 
the Y-directional magnetic field. To account for the 
reason, the magnitudes of the electric current density 
due to the electric field E and the vector product U x B 
are evaluated. Th’: following figures of vectors are 
drawn in the same scale. 

Figure 8 shows the electric current density due to 
the electric field E in (a)-(c) and the vector product 
U x B in (d)-(f) for the X-directional magnetic field 
at Z = 0.4339L. Those in the wall are given by CmE. 
At Cm = 0 (perfectly electro-insulated wall), the elec- 
tric current density vectors due to electric field are 
zero in the wall region. The electric current density in 
the fluid decreases with the increase in Cm, while that 
in the wall increases with the increase in Cm. At 
Cm = co (perfectly electro-conducting wall), the elec- 
tric current density due to electric field almost vanishes 
in the fluid. Due to the heated and cooled walls, the 
ascending and de:scending flows induce the vector 
product U x B whose direction is in the Y-direction 
near the heated and cooled walls. At Cm = 0, the 
vectors at four corners are larger than any other 

(a) X-mag. 

(b) Z-mag. 
Fig, 7. Comparison between the A’- and Z-directional mag- 
netic field at Cm = 1, Ha = 100, Ra = 10’ and Pr = 0.025. 
(a) The X-directional magnetic field and Nu = 1.396. (b) The 

Z-directional magnetic field and Nu = 1.416. 

portions, because velocity vectors near the side walls 
are larger as shown in Fig. 5. 

Figure 9 shows the total electric current density 
vectors J = E+U x B for the X-directional magnetic 
field at Z = 0.4339L. For example, Fig. 8(b) and Fig. 
8(e) give Fig. 9(d) for Cm = 1. In the wall region, 
the electric current density is given by equation (5) 
J = CmE. The electric current density is continuous 
between the wall and the fluid regions. In the fluid 
region, the vector product U x B is dominant only in 
the Y-direction but summation with the electric cur- 
rent density due to electric field E gives the X-direc- 
tional electric current density. Hence, a large clock- 
wise circulation is resulted in the fluid region. Besides, 
four small anticlockwise circulations can be seen at 

Table 3. Physical properties of Ga (310 K) [2] 

Property 
- 

Density 
Viscosity 
Specific heat 
Thermal conductivity 
Volumetric coefficient of thermal expansion 
Electric conductivity (313.15 K) 
Magnetic permeability 
Melting point 

Value Unit 

6.091 x 10’ 
1.902 x lo-’ 
3.976 x 10’ 
3.149 x 10’ 
1.267 x 1O-4 
3.85 x 10” 
4n x lo-’ 
302.93 

kg mm3 
Pans 
J (kg-K)-’ 
;_(,m * K) - ’ 

(Dam)- 
Hrn-’ 
K 
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L X(a)Cm=o 

B, X(b)Cm=l 

kX (c) Cm =oo 

Lx(a)Cm=l 

Fig. 8. Electric current density vectors due to electric field E (left hand side) and vector product U x B 
(right hand side) for the X-d’ lrectional magnetic field at Z = 0.4339L, Ra = lo’, Ha = 100 and Pr = 0.025 

in the fluid region. In the wall region, J = CmE. 
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L ’ (f) Cm =oo 
Fig. 9. Total electric current density vectors J = E+U xB for the X-directional magnetic field at 

2 = 0.4339L, Ra = lo’, Ha = 100 and Pr = 0.025 in the fluid region. In the wall region, J = CmE. 
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Fig. 10. Electric current density vectors due to electric field E (left hand side) and vector product U x B 
(right hand side) for the Y-d’ lrectional magnetic field at Z = 0.4339L, Ra = lo’, Ha = 100 and Pr = 0.025 

in the fluid region. In the wall region, J = CmE. 
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Fig. 11. Total electric current density vectors J = E +U x B for the Y-directional magnetic field at 
Z = 0.4339L, Ra = 105, Ha = 100 and Pr = 0.025 in the fluid region. In the wall region, J = CmE. 
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four corners. At Cm > 10, since the electric field E 
almost vanishes in the fluid, the electric current density 
J is mostly contributed by the vector product LJ x B 
in the fluid region. 

Figure 10(a)-(c) shows the electric current density 
vectors due to electric field E and the vector product 
U x B in Fig. IO(d)-(f) for the Y-directional magnetic 
field at 2 = 0.4339L. Compared to the X-directional 
magnetic field, the Y-directional magnetic field has 
larger magnitude of the electric current density for 
any Cm values. Even at Cm = co, some amount of 
the electric current density is computed in the fluid 
region, although those magnitude at Cm = co are 
much smaller than those at Cm = 0. Most of the elec- 
tric current density vectors are in the X-direction due 
to the main circulation of the natural convection. 

Figure 11 shows the summation of E and U x B to 
give the total electric current density vectors for the 
Y-directional magnetic field at Z = 0.4339L. At 
Cm < 0.1, the electric field E cancels out with the 
vector product Ux B with an inverse sign and the 
electric current density J becomes almost zero except 
near the side boundaries (Y = 0 and L). The Lorentz 
force becomes quite small for small Cm region. At 
Cm = 1, electric current density J becomes rather 
large both in the fluid and wall regions. The larger 
amount of the electric current density J in the fluid 
region works to suppress the convection. At Cm 2 10, 
the electric current density J becomes much larger and 
the suppression due to the Lorentz force becomes 
remarkable. For the high value of Cm, the electric 
current due to terms E and U x B does not cancel out 
each other and the suppressing effect becomes effective 
even for the Y-directional magnetic field. 

7. CONVERSION INTO DIMENSIONAL VALUES 

The cubic enclosure was assumed to be filled with 
gallium whose Pr number is 0.025. Physical properties 
of Ga [2] are listed in Table 3. When the internal 
length of the cubic enclosure is 64 mm, Ha = 100 and 
Ra = lo5 are almost equivalent to 0.035 T (magnetic 
flux density) and 1.2 K (temperature difference 
between hot and cold walls), respectively. The electro- 
conductivity ratio of the wall, Cm = 15, 2.7 and 0.24 

correspond to copper, iron and Nichrome, respec- 
tively. 

8. CONCLUSIONS 

The natural convection of liquid metal in a cubical 
enclosure was numerically studied for the electro-con- 
ductivities of the wall from zero to infinity under the 
X- or Y-directional magnetic fields. Under the X-direc- 
tional magnetic field, induced electric field E and 
U x B term gave a circulating electric current and large 
Lorentz force was resulted for any values of the elec- 
tro-conductivity of the wall. Under the Y-directional 
magnetic field when the electro-conductivity of the 
wall was small, the natural convection of liquid metal 
was suppressed slightly because the vector product 
U x B was almost canceled out by the induced electric 
field E. The effect of magnetic suppression differed 
enormously between the X- and Y-directional mag- 
netic fields when the dimensionless electro-con- 
ductivity of the wall is less than unity. However, with 
the increase in the electro-conductivity of the wall, 
the electric current density in the fluid increases both 
under the X- and Y-directional magnetic fields and 
the Lorentz force becomes effective irrespective of the 
direction of the magnetic field. 
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